A Generalization of Swan's Theorem

By Harold M. Fredricksen, Alfred W. Hales and Melvin M. Sweet

Abstract

Let f and g denote polynomials over the two-element field. In this paper we show that the parity of the number of irreducible factors of $x^{n} f+g$ is a periodic function of n, with period dividing eight times the period of the polynomial $f^{2}\left(x(g / f)^{\prime}-n(g / f)\right)$. This can be considered a generalization of Swan's trinomial theorem [3].

1. Introduction. Let f and g denote polynomials in x over the two-element field F_{2}, i.e., members of $F_{2}[x]$. Let $r=r_{n}$ denote the number of irreducible factors of the polynomial $x^{n} f+g$. In this paper we show that, for fixed f and g, the parity of r_{n} is an eventually periodic function of n. For fixed parity of n this period is a divisor of 8π, where π is the period (in the usual sense) of the polynomial

$$
h=f^{2}\left(x(g / f)^{\prime}-n(g / f)\right),
$$

i.e., the least π so that the polynomial h divides (a power of x times) $x^{\pi}-1$. Our result can be considered a generalization of Swan's theorem [3] concerning the number of irreducible factors of a trinomial $x^{n}+x^{k}+1$ (by taking $f=1$ and $g=x^{k}+1$).

We also investigate initial tail effects and some observed antiperiodicity properties of (the parity of) r_{n}. The paper concludes with tables of values of r_{n} for various f, g, and n.

We wish to thank Lloyd Welch for providing us with a polynomial factoring program. This program was an immense help in checking and refining our results.
2. Background. We begin by recalling various properties of the resultant and discriminant for polynomials F, G with integer coefficients [1]. If

$$
F(x)=a \prod_{i=1}^{n}\left(x-\alpha_{i}\right) \quad \text { and } \quad G(x)=b \prod_{j=1}^{m}\left(x-\beta_{j}\right)
$$

then the resultant $R(F, G)$ is an integer given by any one of the following equal expressions:

$$
\begin{gather*}
R(F, G)=a^{m} b^{n} \prod_{l=1}^{n} \prod_{J=1}^{m}\left(\alpha_{t}-\beta_{j}\right), \tag{1}\\
R(F, G)=a^{m} \prod_{l=1}^{n} G\left(\alpha_{i}\right) \tag{2}\\
R(F, G)=(-1)^{m n} b^{n} \prod_{\jmath=1}^{m} F\left(\beta_{J}\right) . \tag{3}
\end{gather*}
$$

[^0]$R(F, G)$ is also the value of the determinant of the following $(m+n) \times(m+n)$ matrix where
\[

$$
\begin{aligned}
& F(x)=a x^{n}+a_{1} x^{n-1}+\cdots+a_{n} \quad \text { and } \quad G(x)=b x^{m}+b_{1} x^{m-1}+\cdots+b_{m}: \\
& \begin{array}{ccccccccc}
a & a_{1} & \cdots & & a_{n} & 0 & 0 & \cdots & 0 \\
0 & a & a_{1} & \ldots & & a_{n} & 0 & \cdots & 0 \\
0 & 0 & a & a_{1} & \ldots & & a_{n} & \cdots & 0
\end{array} \\
& \begin{array}{llll}
0 & 0 & \cdots & \cdots \\
0 & a_{n-2} & a_{n-1} & a_{n} \\
0 & \cdots &
\end{array} \\
& \begin{array}{ccclllll}
b & b_{1} & \cdots & & 0 & 0 & \cdots & 0 \\
0 & b & b_{1} & \ldots & & 0 & \cdots & 0
\end{array} \\
& \begin{array}{ccccccc}
0 & 0 & b & b_{1} & \cdots & \cdots & 0
\end{array} \\
& 0 \quad 0 \quad \cdots \quad \cdots \quad b_{m-2} \quad b_{m-1} \quad b_{m}
\end{aligned}
$$
\]

From the above it is easy to deduce the following properties of R :

$$
\begin{gather*}
R(G, F)=(-1)^{n m} R(F, G), \tag{4}\\
R\left(F, G_{1} G_{2}\right)=R\left(F, G_{1}\right) R\left(F, G_{2}\right), \quad R\left(F_{1} F_{2}, G\right)=R\left(F_{1}, G\right) R\left(F_{2}, G\right), \\
R(F, G)=a^{m-\operatorname{deg}(G-F H)} R(F, G-F H) \text { for any } H . \tag{6}
\end{gather*}
$$

The discriminant $D(F)$ of a monic polynomial $\prod_{i=1}^{n}\left(x-\alpha_{i}\right)$ is given by

$$
\begin{equation*}
D(F)=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2} \tag{7}
\end{equation*}
$$

which can also be written

$$
\begin{align*}
& D(F)=(-1)^{n(n-1) / 2} \prod_{i=1}^{n} F^{\prime}\left(\alpha_{t}\right) \tag{8}\\
& D(F)=(-1)^{n(n-1) / 2} R\left(F, F^{\prime}\right) \tag{9}
\end{align*}
$$

Our main tool will be Swan's version of Stickelberger's theorem ([1], [3]). Suppose F is a monic polynomial of degree n with integral coefficients and that F, reduced modulo 2 (which we denote by \bar{F} or f), has r irreducible factors. Then
(a) $D(F) \equiv 1(\bmod 8)$ implies $r \equiv n(\bmod 2)$,
(b) $D(F) \equiv 5(\bmod 8)$ implies $r \not \equiv n(\bmod 2)$,
(c) $D(F) \not \equiv 1,5(\bmod 8)$ implies f has repeated factors.

Hence, the value of $D(F)(\bmod 8)$ determines the parity of r if f has no repeated factors and the parity of n is known.
3. Theoretical Results. We consider first a special case. Let g be a polynomial of degree k over the two-element field F_{2} with $g(0)=1$, and let G be a polynomial with integer coefficients of the same degree with $\bar{G}=g$. (Take, say, all coefficients of G to be 0 or 1.) Consider the family $\left\{p_{n}\right\}$ of polynomials over F_{2} given by $p_{n}=x^{n}+g(x)$ and the associated family $\left\{P_{n}\right\}$ with $P_{n}=x^{n}+G(x)$. We have (considering only cases with $n>k$)

$$
D\left(P_{n}\right)=(-1)^{n(n-1) / 2} R\left(P_{n}, P_{n}^{\prime}\right) .
$$

However, the assumption $G(0)=1$ implies $R\left(P_{n}, x\right)=(-1)^{n}$, so

$$
R\left(P_{n}, x P_{n}^{\prime}\right)=(-1)^{n} R\left(P_{n}, P_{n}^{\prime}\right)
$$

and

$$
D\left(P_{n}\right)=(-1)^{n(n-1) / 2+n} R\left(P_{n}, x P_{n}^{\prime}\right)=(-1)^{n(n+1) / 2} R\left(P_{n}, x P_{n}^{\prime}-n P_{n}\right),
$$

using property (6) of Section 2.
Let $H_{n}=x P_{n}^{\prime}-n P_{n}$, and $h_{n}=\bar{H}_{n}$. Then we have $H_{n}=x G^{\prime}-n G$ since the contributions from x^{n} cancel, and $h_{n}=x g^{\prime}-n g$ only depends on the parity of n. Hence, if the parity of n is fixed, h_{n} does not depend on n.

For fixed parity of n, let π denote the period of h_{n}, i.e., the least positive integer such that h_{n} divides $x^{\pi}-1$ in $F_{2}[x]$. (If h_{n} has zero constant term, let π denote the period of k_{n} where $h_{n}=x^{t} k_{n}$ and $k_{n}(0)=1$.) Then we have

Theorem 1. Let r_{n} denote the number of irreducible factors of $p_{n}=x^{n}+g$. Then if p_{n} has no repeated factors (and n is sufficiently large) we have

$$
r_{n} \equiv r_{n+\mathrm{LCM}(8,4 \pi)}(\bmod 2),
$$

where π is the period of $h_{n}=x g^{\prime}-n g$.*
Proof. Using the Stickelberger-Swan theorem it suffices to prove that

$$
D\left(P_{n}\right) \equiv D\left(P_{n+\mathrm{LCM}(8,4 \pi)}\right)(\bmod 8)
$$

Now we have shown

$$
D\left(P_{n}\right)=(-1)^{n(n+1) / 2} R\left(P_{n}, H_{n}\right)
$$

and $(-1)^{n(n+1) / 2}$ has period 4 , so it suffices to show that $R\left(P_{n}, H_{n}\right)$ is congruent to

$$
R\left(P_{n+\mathrm{LCM}(8,4 \pi)}, H_{n+\mathrm{LCM}(8,4 \pi)}\right)(\bmod 8) .
$$

Clearly H_{n} and H_{n+8} are congruent (coefficient by coefficient) modulo 8 and have the same degree, so from the determinant definition of the resultant we need only show that

$$
R\left(P_{n}, H_{n}\right) \equiv R\left(P_{n+4 \pi}, H_{n}\right)(\bmod 8) .
$$

Since h_{n} divides $x^{\pi}-1$, we know that H_{n} divides $x^{\pi}-1(\bmod 2)$, i.e., $x^{\pi} \equiv 1+2 K$ $\left(\bmod H_{n}\right)$. Therefore

$$
x^{4 \pi} \equiv(1+2 K)^{4} \equiv 1+8 L\left(\bmod H_{n}\right) .
$$

(If h_{n} divides $x^{t}\left(x^{\pi}-1\right)$, then $x^{4 \pi+4 t} \equiv x^{4 t}+8 L\left(\bmod H_{n}\right)$.)
Case 1. Suppose $n-k$ is odd. Then H_{n} and h_{n} have the same degree. This means that in the congruence $x^{4 \pi} \equiv 1+8 L\left(\bmod H_{n}\right)$ we can take the degree of L to be less than 4π. In other words we have $x^{4 \pi} \equiv 1+H_{n} M(\bmod 8)$ with the degree of $1+H_{n} M$ equal to 4π. This gives $x^{n+4 \pi} \equiv x^{n}+x^{n} H_{n} M(\bmod 8)$.

Now we have

$$
\begin{aligned}
R\left(P_{n+4 \pi}, H_{n}\right) & =R\left(x^{n+4 \pi}+G, H_{n}\right) \\
& \equiv R\left(x^{n}+x^{n} H_{n} M+G, H_{n}\right)(\bmod 8),
\end{aligned}
$$

[^1]using the determinant definition of R and the fact that $x^{n}+x^{n} H_{n} M$ has degree $n+4 \pi$. Hence,
$$
R\left(P_{n+4 \pi}, H_{n}\right) \equiv(k-n)^{4 \pi} R\left(x^{n}+G, H_{n}\right)(\bmod 8),
$$
where $(k-n)$ is the leading coefficient of H_{n} and we are using properties (6) and (4) of Section 2. Since $(k-n)^{4 \pi} \equiv 1(\bmod 8)$ we conclude
$$
R\left(P_{n+4 \pi}, H_{n}\right) \equiv R\left(P_{n}, H_{n}\right)(\bmod 8)
$$

This completes Case 1.
Although we have only given the details when $h_{n}(0)=1$, the argument is similar for $t>0$ and shows that periodicity will hold as soon as n is at least $4 t$ (and of course greater than k).

Case 2. Suppose $n-k$ is even. Then h_{n} has degree $l<k$ and we write $u=k-l$. By applying Hensel's lemma [2, p. 275] we can write $H_{n}=H_{n}^{(1)} H_{n}^{(2)}$, where $H_{n}^{(1)}$, $H_{n}^{(2)}$ have 2-adic coefficients

$$
\bar{H}_{n}^{(1)}=h_{n}, \quad \bar{H}_{n}^{(2)}=1,
$$

$H_{n}^{(1)}$ has degree l, and $H_{n}^{(2)}$ has degree u. By property (5) of Section 2 we need only that

$$
R\left(P_{n+4 \pi}, H_{n}^{(1)}\right) \equiv R\left(P_{n}, H_{n}^{(1)}\right)(\bmod 8)
$$

and

$$
R\left(P_{n+4 \pi}, H_{n}^{(2)}\right) \equiv R\left(P_{n}, H_{n}^{(2)}\right)(\bmod 8) .
$$

The former follows immediately from Case 1 . For the latter we proceed as follows. Since $H_{n}^{(2)} \equiv 1(\bmod 2)$ we can write $x \equiv 1+2 Q\left(\bmod H_{n}^{(2)}\right)$, where the degree of Q is $u+1$. Hence $x^{4} \equiv 1+8 R\left(\bmod H_{n}^{(2)}\right)$, where the degree of R is $4 u+4$, or $x^{4} \equiv 1+H_{n}^{(2)} S(\bmod 8)$ with the degree of $H_{n}^{(2)} S$ equal to $4 u+4$. Now for any nonzero x^{a} present in G we have

$$
x^{4+a} \equiv x^{a}+x^{a} H_{n}^{(2)} S(\bmod 8)
$$

Suppose n is larger than $k+4 u$, so that $n+4$ is larger than $k+4 u+4$. Then the degree of $x^{a} H_{n}^{(2)} S$ will be less than $n+4$. Hence

$$
R\left(x^{n+4}+G, H_{n}^{(2)}\right) \equiv R\left(x^{n+4}+x^{4} G-H_{n}^{(2)} S G, H_{n}^{(2)}\right)(\bmod 8),
$$

using the determinant definition of R. Hence, applying properties (6) and (4) of Section 2, we have

$$
R\left(x^{n+4}+G, H_{n}^{(2)}\right) \equiv R\left(x^{n+4}+x^{4} G, H_{n}^{(2)}\right)(\bmod 8)
$$

But we have

$$
\begin{aligned}
R\left(x^{4}\left(x^{n}+G\right), H_{n}^{(2)}\right) & =R\left(x^{4}, H_{n}^{(2)}\right) R\left(x^{n}+G, H_{n}^{(2)}\right) \\
& =\left(H_{n}^{(2)}(0)\right)^{4} R\left(x^{n}+G, H_{n}^{(2)}\right) \\
& \equiv R\left(x^{n}+G, H_{n}^{(2)}\right)(\bmod 8),
\end{aligned}
$$

using properties (5) and (2) of Section 2. Hence, we have

$$
R\left(P_{n+4}, H_{n}^{(2)}\right) \equiv R\left(P_{n}, H_{n}^{(2)}\right)(\bmod 8)
$$

and, upon iterating,

$$
R\left(P_{n+4 \pi}, H_{n}^{(2)}\right) \equiv R\left(P_{n}, H_{n}^{(2)}\right)(\bmod 8)
$$

This completes Case 2 and hence the proof of Theorem 1.

In Case 2, periodicity will hold as soon as $n \geqslant 4 t$ and $n>k+4 u$.
Now let us consider the more general case of a family of polynomials $\left\{p_{n}\right\}$ with $p_{n}=x^{n} f+g$, where f, g are coprime polynomials over F_{2} with $g(0)=f(0)=1$ (consider only $n>k=$ degree g). Suppose F, G are polynomials with integer coefficients with $\bar{F}=f, \bar{G}=g$, degree $F=$ degree f, degree $G=$ degree g. (As before, we take all coefficients of F, G to be 0 or 1.) Let $P_{n}=x^{n} F+G$. We have

$$
\begin{aligned}
R\left(P_{n}, P_{n}^{\prime}\right) & =R\left(x^{n} F+G, n x^{n-1} F+x^{n} F^{\prime}+G^{\prime}\right) \\
& =R\left(x^{n} F+G, x\right)^{-1} R\left(x^{n} F+G, n x^{n} F+x^{n+1} F^{\prime}+x G^{\prime}\right) \\
& =(-1)^{n+\operatorname{deg} F} R\left(x^{n} F+G, x^{n+1} F^{\prime}+x G^{\prime}-n G\right) \\
& =(-1)^{n+\operatorname{deg} F} R\left(x^{n} F+G, F\right)^{-1} R\left(x^{n} F+G, x^{n+1} F F^{\prime}+x F G^{\prime}-n F G\right) \\
& =(-1)^{n+\operatorname{deg} F} R(G, F)^{-1} R\left(x^{n} F+G, x F G^{\prime}-x G F^{\prime}-n F G\right),
\end{aligned}
$$

using various properties from Section 2. Letting $H_{n}=x F G^{\prime}-x F^{\prime} G-n F G$, and hence obtaining

$$
h_{n}=\bar{H}_{n}=x f g^{\prime}-x f^{\prime} g-n f g=f^{2}\left(x(g / f)^{\prime}-n(g / f)\right),
$$

we have
Theorem 2. Let r_{n} denote the number of irreducible factors of $p_{n}=x^{n} f+g$. If p_{n} has no repeated factors (and n is sufficiently large), then $r_{n} \equiv r_{n+\mathrm{LCM}(8,4 \pi)}(\bmod 2)$, where π is the period of $h_{n}=f^{2}\left(x(g / f)^{\prime}-n(g / f)\right)$. $^{* *}$

From the above calculations it clearly suffices (for the proof of Theorem 2) to show that

$$
R\left(P_{n}, H_{n}\right) \equiv R\left(P_{n+4 \pi}, H_{n}\right)(\bmod 8) .
$$

We omit the details, since they are very similar to those of the proof of Theorem 1 , i.e., the case $f=1$. Periodicity will again hold as soon as $n \geqslant 4 t$ and $n>k+4 u$, where x^{t} exactly divides $h_{n}, k=$ degree g, and $u=$ degree H_{n} - degree h_{n}.
4. Further Comments. Although our results appear to be best possible in general, there are many special cases in which the actual period of the function r_{n} is less than the period predicted by our theorems. One such case is that of trinomials $x^{n}+x^{k}+1$ with n odd and k even, where the period is 8 rather than $4 k$.

Theorems 1 and 2 do not address the case of repeated factors. Certainly, if p_{n} has repeated factors so will $p_{n+\mathrm{LCM}(8,4 \pi)}$, since this is detected by the parity of $D\left(P_{n}\right)$. Unfortunately, the Stickelberger-Swan theorem does not give information about the parity of r_{n} in this case. However, any repeated factors of p_{n} must divide h_{n}. For given h_{n} these can be divided out of p_{n} at the start, giving a new family of polynomials parameterized by n in a more complicated way than that of our Theorems 1 and 2. Our techniques can be used to extend our results to cover this situation also, and hence to extend Theorems 1 and 2 to the repeated factor case. We omit the (relatively messy) details.

Finally, consider a family of the form $p_{n}=x^{n}+g(x)$, where n is odd and $g(x)=u(x)^{2}$. Then $h_{n}=g$. Suppose further that $u(x)$ has odd period π^{\prime}. Then $u(x)$ and $\left(x^{\pi^{\prime}}-1\right) / u(x)$ are coprime, so we can find (by Hensel's lemma) 2-adic

[^2]polynomials $U(x), V(x)$ with $\bar{U}=u, U V=x^{\pi^{\prime}}-1$, and degree $U=$ degree u. This gives $x^{2 \pi^{\prime}}-1=U\left(x^{2}\right) V\left(x^{2}\right)$, where $\bar{U}\left(x^{2}\right)=u(x)^{2}=g(x)$. By appropriately choosing G (i.e., no longer with 0,1 coefficients) with degree $G=$ degree $g, \bar{G}=g$, we can guarantee that $H_{n}=x G^{\prime}-n G$ is congruent to $U\left(x^{2}\right)(\bmod 8)$. (Adding two to the coefficient of a term x^{a} of G adds $2(a-n)$ to the coefficients of x^{a} in H_{n}.) Hence $x^{2 \pi^{\prime}} \equiv 1+H_{n} M(\bmod 8)$. From this, as in Case 1 of Theorem 1, we deduce
$$
R\left(P_{n+4 \pi^{\prime}}, H_{n}\right) \equiv R\left(P_{n}, H_{n}\right)(\bmod 8)
$$

On the other hand, if we compare $R\left(P_{n+4 \pi^{\prime}}, H_{n}\right)$ and $R\left(P_{n+4 \pi^{\prime}}, H_{n+4 \pi^{\prime}}\right)$ via the determinant definition of R, using the fact that the nonzero coefficients of $H_{n+4 \pi^{\prime}}$ are each $4 \pi^{\prime}$ smaller than those of H_{n}, and the fact that for any odd integer N we have $N-4 \equiv(-3) N(\bmod 8)$, we find that

$$
R\left(P_{n+4 \pi^{\prime}}, H_{n+4 \pi^{\prime}}\right) \equiv(-3)^{\pi^{\prime}\left(n+4 \pi^{\prime}\right)} R\left(P_{n+4 \pi^{\prime}}, H_{n}\right)(\bmod 8) .
$$

But $(-3)^{\pi^{\prime} n} \equiv(-3)(\bmod 8)$, so we conclude that r_{n} is antiperiodic with antiperiod $4 \pi^{\prime}$. (Note that the predicted period of r_{n} is $4 \pi=8 \pi^{\prime}$, which this result implies.)
5. Experimental Results. In this section, we give tables of values of r_{n} for various f, g, and n. The cases where Theorem 1 applies $(f=1)$ are listed first. The cases of odd and even n are listed separately. The parity (0 or 1) of r_{n} is also given.

After each table, we give the polynomial $h=h_{n}$; the predicted period $\operatorname{LCM}(8,4 \pi)$ of r_{n}; the observed period (if it is different); and the antiperiod for those cases covered in Section 4.
I. $f=1 ; g=x^{3}+x+1$.

n	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34
r_{n}	3	4	3	5	3	4	5	5	5	6	3	5	5	4	3	7
parity	1	0	1	1	1	0	1	1	1	0	1	1	1	0	1	1

$h=x^{3}+x ;$ period $=8$.
II. $f=1 ; g=x^{4}+x^{2}+1$.

$$
\begin{array}{lrrrrrrrrrrrrrr}
n & 5 & 7 & 9 & 11 & 13 & 15 & 17 & 19 & 21 & 23 & 25 & 27 & 29 & 31 \\
r_{n} & 2 & 2 & 2 & 2 & 3 & 4 & 3 & 3 & 3 & 3 & 2 & 3 & 4 & 4 \\
\text { parity } & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\
n & 33 & 35 & 37 & 39 & 41 & 43 & 45 & 47 & 49 & 51 & 53 & 55 & 57 & 59 \\
r_{n} & 2 & 4 & 3 & 2 & 3 & 5 & 3 & 5 & 2 & 5 & 4 & 2 & 4 & 4 \\
\text { parity } & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}
$$

$h=x^{4}+x^{2}+1 ;$ period $=24$; antiperiod $=12$.
III. $f=1 ; g=x^{5}+x+1$.

$$
\begin{array}{lrrrrrrrrrrrrrrrr}
n & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & 26 & 28 & 30 & 32 & 34 & 36 \\
r_{n} & 3 & 5 & 3 & 6 & 4 & 7 & 4 & 6 & 3 & 5 & 5 & 6 & 6 & 5 & 4 & 8 \\
\text { parity } & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0
\end{array}
$$

$h=x^{5}+x$; period $=16$.
IV. $f=1 ; g=x^{6}+x^{2}+1$

$$
\begin{array}{lrrrrrrrrrrrrrrrr}
n & 7 & 9 & 11 & 13 & 15 & 17 & 19 & 21 & 23 & 25 & 27 & 29 & 31 & 33 & 35 & 37 \\
r_{n} & 2 & 2 & 3 & 2 & 2 & 3 & 4 & 3 & 4 & 4 & 2 & 5 & 3 & 5 & 5 & 5 \\
\text { parity } & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
n & 39 & 41 & 43 & 45 & 47 & 49 & 51 & 53 & 55 & 57 & 59 & 61 & 63 & & & \\
r_{n} & 4 & 3 & 5 & 2 & 5 & 4 & 5 & 5 & 3 & 4 & 6 & 4 & 4 & & & \\
\text { parity } & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & & &
\end{array}
$$

$h=x^{6}+x^{2}+1 ;$ period $=56 ;$ antiperiod $=28$.
V. $f=1 ; g=x^{7}+x+1$.

n	8	10	12	14	16	18	20	22	24	26	28	30
r_{n}	4	4	5	4	3	7	4	7	6	5	3	6
parity	0	0	1	0	1	1	0	1	0	1	1	0
n	32	34	36	38	40	42	44	46	48	50	52	54
r_{n}	4	4	7	4	3	9	4	5	6	7	5	8
parity	0	0	1	0	1	1	0	1	0	1	1	0

$h=x^{7}+x ;$ period $=24$.
VI. $f=1 ; g=x^{8}+x^{4}+1$.

n	9	11	13	15	17	19	21	23	25	27	29	31	33	35	37	39	41	43	45
r_{n}	3	2	4	3	3	2	2	3	3	4	2	3	3	2	4	3	5	4	4
parity	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0

$h=x^{8}+x^{4}+1 ;$ predicted period $=48 ;$ observed period $=8$.
VII. $f=1 ; g=x^{9}+x+1$.

n	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
r_{n}	4	6	4	10	4	6	4	10	5	8	5	10	5	6	5	12
parity	0	0	0	0	0	0	0	0	1	0	1	0	1	0	1	0
n	42	44	46	48	50	52	54	56	58	60	62	64	66	68	70	72
r_{n}	4	6	6	10	4	8	4	12	7	6	3	12	5	6	7	12
parity	0	0	0	0	0	0	0	0	1	0	1	0	1	0	1	0

$h=x^{9}+x ;$ period $=32$.
VIII. $f=1 ; g=x^{9}+x+1$.

n	11	13	15	17	19	21	23	25	27	29	31	33
r_{n}	3	4	2	3	5	4	3	5	3	4	5	3
parity	1	0	0	1	1	0	1	1	1	0	1	1
n	35	37	39	41	43	45	47	49	51	53	55	57
r_{n}	2	4	5	3	6	4	5	5	4	4	5	2
parity	0	0	1	1	0	0	1	1	0	0	1	1

$h=1 ;$ period $=8$.
IX. $f=1 ; g=x^{17}+x+1$.

n	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48
r_{n}	4	6	4	10	3	6	4	18	6	6	5	12	4	6	4	20
parity	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0
n	50	52	54	56	58	60	62	64	66	68	70	72	74	76	78	80
r_{n}	5	8	3	10	4	6	7	18	5	6	4	10	5	6	3	20
parity	1	0	1	0	0	0	1	0	1	0	0	0	1	0	1	0

$h=x^{17}+x$; period $=64$.
X. $f=1 ; g=x^{5}+x^{3}+x+1$.

n	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36
r_{n}	3	1	2	4	1	1	4	2	1	5	2	2	5	3	2	4
parity	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0
n	38	40	42	44	46	48	50	52	54	56	58	60	62			
r_{n}	3	3	6	2	3	5	2	4	7	3	4	4	3			
parity	1	1	0	0	1	1	0	0	1	1	0	0	1			

$h=x^{5}+x^{3}+x ;$ predicted period $=24 ;$ observed period $=8$.
XI. $f=1 ; g=x^{7}+x^{3}+x+1$.

n	9	11	13	15	17	19	21	23	25	27	29	31	33	35	37	39
r_{n}	2	2	1	3	2	2	3	1	3	2	4	1	3	4	2	3
parity	0	0	1	1	0	0	1	1	1	0	0	1	1	0	0	1
n	41	43	45	47	49	51	53	55	57	59						
r_{n}	1	2	2	1	3	2	4	3	3	4						
parity	1	0	0	1	1	0	0	1	1	0						

$h=1 ;$ period $=8$.
XII. $f=1 ; g=x^{7}+x^{3}+x+1$.
$\left.\begin{array}{lrrrrrrrrrrrrrrrr}n & 8 & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & 26 & 28 & 30 & 32 & 34 & 36 & \\ r_{n} & 1 & 1 & 1 & 4 & 2 & 2 & 2 & 1 & 3 & 3 & 4 & 1 & 3 & 3 & 2 & \\ \text { parity } & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & \\ n & 38 & 40 & 42 & 44 & 46 & 48 & 50 & 52 & 54 & 56 & 58 & 60 & 62 & 64 & 66 & 68 \\ r_{n} & 2 & 4 & 3 & 5 & 5 & 3 & 2 & 2 & 4 & 6 & 2 & 4 & 2 & 3 & 3 & 3 \\ \hline \text { parity } & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ n & 72 & 74 & 76 & 78 & 80 & 82 & 84 & 86 & 88 & 90 & 92 & 94 & 96 & 98 & 100 & 102 \\ \hline n & 4 & 4 & 2 & 3 & 3 & 3 & 8 & 3 & 3 & 3 & 4 & 2 & 4 & 3 & 3 & 5 \\ r_{n} & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1\end{array}\right) 10$
$h=x^{7}+x^{3}+x$; period $=56$.
XIII. $f=1 ; g=x^{8}+x^{7}+x+1$.

n	10	12	14	16	18	20	22	24	26	28	30	32	
r_{n}	4	1	2	3	3	1	4	2	1	4	2	2	
parity	0	1	0	1	1	1	0	0	1	0	0	0	
n	34	36	38	40	42	44	46	48	50	52	54	56	58
r_{n}	7	1	2	7	3	3	4	2	3	6	2	4	7
r_{n}	5												
parity	1	1	0	1	1	1	0	0	1	0	0	0	1

$h=x^{7}+x$; period $=24$.
XIV. $f=1 ; g=x^{9}+x^{5}+x+1$.

n	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48
r_{n}	1	5	2	2	3	1	1	6	2	1	4	2	1	5	2	2	4	3	3	6
parity	1	1	0	0	1	1	1	0	0	1	0	0	1	1	0	0	0	1	1	0
n	50	52	54	56	58	60	62	64	66	68	70	72	74	76	78	80	82	84	86	88
r_{n}	2	3	5	4	5	7	2	2	5	3	3	8	2	3	6	2	3	7	4	2
parity	0	1	1	0	1	1	0	0	1	1	1	0	0	1	0	0	1	1	0	0

$$
\begin{aligned}
& h=x^{9}+x^{5}+x ; \text { period }=48 \\
& \quad \text { XV. } f=x+1 ; g=x^{2}+x+1 .
\end{aligned}
$$

n	3	5	7	9	11	13	15	17	19	21	23	25	27	29	31	33
r_{n}	1	1	1	2	1	3	2	2	1	3	4	2	3	1	2	2
parity	1	1	1	0	1	1	0	0	1	1	0	0	1	1	0	0
n	35	37	39	41	43	45	47	49								
r_{n}	3	3	2	4	3	3	2	2								
parity	1	1	0	0	1	1	0	0								

$h=1 ;$ period $=8$.
XVI. $f=x+1 ; g=x^{2}+x+1$.

n	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34
r_{n}	1	2	2	2	1	1	2	2	3	1	2	2	3	3	2	2
parity	1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0

n	36	38	40	42	44	46	48
r_{n}	3	3	2	2	3	3	4
parity	1	1	0	0	1	1	0

$h=x^{3} ;$ period $=8$.
XVII. $f=x+1 ; g=x^{3}+x+1$.

n	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38
r_{n}	1	1	3	1	2	2	1	3	2	2	3	3	2	2	3	3	2	4
parity	1	1	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0

$h=x^{3} ;$ period $=8$.
XVIII. $f=x+1 ; g=x^{3}+x+1$.

n	5	7	9	11	13	15	17	19	21	23	25	27	29	31	33
r_{n}	3	1	2	3	1	2	4	2	1	5	2	3	7	1	4
parity	1	1	0	1	1	0	0	0	1	1	0	1	1	1	0
n	35	37	39	41	43	45	47	49	51	53	55				
r_{n}	5	1	2	4	4	3	5	2	1	5	1				
parity	1	1	0	0	0	1	1	0	1	1	1				

$h=x^{4}+x^{2}+1$; period $=24$.
XIX. $f=x+1 ; g=x^{3}+x^{2}+1$.

n	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34
r_{n}	1	2	2	1	2	2	1	3	2	2	5	1	2	2	3	1
parity	1	0	0	1	0	0	1	1	0	0	1	1	0	0	1	1
n	36	38	40	42	44	46	48	50								
r_{n}	4	2	1	5	2	2	3	3								
parity	0	0	1	1	0	0	1	1								

$h=x$; period $=8$.
XX. $f=x+1 ; g=x^{3}+x^{2}+1$.

n	5	7	9	11	13	15	17	19	21	23	25	27	29	31	33
r_{n}	1	1	4	1	1	4	2	2	5	2	2	4	5	1	4
parity	1	1	0	1	1	0	0	0	1	0	0	0	1	1	0
n	35	37	39	41	43	45	47	49	51						
r_{n}	3	3	4	2	2	5	2	2	4						
parity	1	1	0	0	0	1	0	0	0						

$$
\begin{aligned}
& h=x^{4}+x^{2}+1 ; \text { period }=24 \\
& \quad \text { XXI. } f=x+1 ; g=x^{4}+x^{2}+1 .
\end{aligned}
$$

n	5	7	9	11	13	15	17	19	21	23	25	27	29	31	33
r_{n}	1	2	1	2	1	1	3	3	2	3	2	4	2	4	1
parity	1	0	1	0	1	1	1	1	0	1	0	0	0	0	1
n	35	37	39	41	43	45	47	49	51						
r_{n}	4	3	1	3	1	4	5	4	2						
parity	0	1	1	1	1	0	1	0	0						

$h=x^{4}+x^{2}+1 ;$ period $=24$.
XXII. $f=x+1 ; g=x^{4}+x^{2}+1$.

n	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34
r_{n}	1	1	2	1	2	2	2	2	1	2	3	3	1	3	2
parity	1	1	0	1	0	0	0	0	1	0	1	1	1	1	0
n	36	38	40	42	44	46	48	50							
r_{n}	1	4	2	4	2	5	4	1							
parity	1	0	0	0	0	1	0	1							

$h=x^{5}+x^{3}+x$; period $=24$.
XXIII. $f=x^{2}+1 ; g=x^{4}+x^{2}+1$.

n	5	7	9	11	13	15	17	19	21	23	25	27	29	31	33
r_{n}	2	1	1	3	1	2	3	2	2	2	4	3	2	3	3
parity	0	1	1	1	1	0	1	0	0	0	0	1	0	1	1
n	35	37	39	41	43	45	47	49	51						
r_{n}	3	1	4	3	2	2	4	2	3						
parity	1	1	0	1	0	0	0	0	1						

$h=x^{6}+1$; period $=24$.
XXIV. $f=x^{2}+x+1 ; g=x^{3}+x+1$.

n	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34
r_{n}	2	2	2	3	3	3	4	2	3	3	2	2	3	5	4	2
parity	0	0	0	1	1	1	0	0	1	1	0	0	1	1	0	0
n	36	38	40	42	44	46	48	50								
r_{n}	5	5	4	4	5	5	2	4								
parity	1	1	0	0	1	1	0	0								

$h=x^{5} ;$ period $=8$.
XXV. $f=x^{2}+x+1 ; g=x^{3}+x+1$.

n	5	7	9	11	13	15	17	19	21	23	25	27	29	31	33
r_{n}	3	5	4	6	4	5	3	6	3	7	4	8	4	7	5
parity	1	1	0	0	0	1	1	0	1	1	0	0	0	1	1
n	35	37	39	41	43	45	47	49	51						
r_{n}	5	5	7	4	8	6	7	5	8						
parity	1	1	1	0	0	0	1	1	0						

$h=x^{4}+1$; period $=16$.
XXVI. $f=x^{2}+x+1 ; g=x^{3}+x^{2}+1$.

n	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34
r_{n}	3	6	3	5	4	6	4	7	5	8	3	7	4	6	4	9
parity	1	0	1	1	0	0	0	1	1	0	1	1	0	0	0	1
n	36	38	40	42	44	46	48	50								
r_{n}	3	6	3	7	4	8	6	7								
parity	1	0	1	1	0	0	0	1								

$$
h=x^{5}+x ; \text { period }=16 .
$$

XXVII. $f=x^{2}+x+1 ; g=x^{3}+x^{2}+1$.

n	5	7	9	11	13	15	17	19	21	23	25	27	29	31	33
r_{n}	2	2	2	2	3	2	2	3	3	2	4	5	3	4	4
parity	0	0	0	0	1	0	0	1	1	0	0	1	1	0	0
n	35	37	39	41	43	45	47	49	51						
r_{n}	3	3	2	4	3	3	4	4	3						
parity	1	1	0	0	1	1	0	0	1						

$h=1 ;$ period $=8$.
XXVIII. $f=x^{3}+x^{2}+1 ; g=x^{3}+x+1$.

n	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38
r_{n}	5	3	2	4	3	3	6	4	5	5	6	2	5	3	2	6
parity	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0

$h=x^{5}+x^{3}+x ;$ predicted period $=24 ;$ observed period $=8$.
XXIX. $f=x^{3}+x^{2}+1 ; g=x^{3}+x+1$.

n	9	11	13	15	17	19	21	23	25	27	29	31	33
r_{n}	6	5	8	3	6	5	7	7	6	3	8	5	6
parity	0	1	0	1	0	1	1	1	0	1	0	1	0
n	35	37	39	41	43	45	47	49	51	53	55		
r_{n}	7	7	7	8	5	8	7	8	5	9	5		
parity	1	1	1	0	1	0	1	0	1	1	1		

$h=x^{6}+x^{4}+x^{2}+1$; predicted period $=32$; observed period $=16$.
Department of Mathematics
Naval Postgraduate School
Monterey, California 93943
Department of Mathematics
University of California, Los Angeles
Los Angeles, California 90024
The Aerospace Corporation
P. O. Box 92957

Los Angeles, California 90009

1. E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York, 1968.
2. Z. I. Borevich \& I. R. Shafarevich, Number Theory, Academic Press, New York, 1966.
3. R. G. Swan, "Factorization of polynomials over finite fields," Pacific J. Math., v. 12, 1962, pp. 1099-1106.

[^0]: Received July 10, 1984.
 1980 Mathematics Subject Classification. Primary 12C05.

[^1]: *Note: h_{n} will always be a square or x times a square, so π will be even unless $\pi=1$, and hence $\operatorname{LCM}(8,4 \pi)=4 \pi$ unless $\pi=1$.

[^2]: ${ }^{* *}$ Note: As in Theorem 1, either $\operatorname{LCM}(8,4 \pi)=4 \pi$ or $\pi=1$.

