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A Generalization of Swan's Theorem 

By Harold M. Fredricksen, Alfred W. Hales and Melvin M. Sweet 

Abstract. Let f and g denote polynomials over the two-element field. In this paper we show 
that the parity of the number of irreducible factors of x'f + g is a periodic function of n, 
with period dividing eight times the period of the polynomial f 2(x(g/f)' - n(g/f)). This 
can be considered a generalization of Swan's trinomial theorem [3]. 

1. Introduction. Let f and g denote polynomials in x over the two-element field 
F2, i.e., members of F2[x]. Let r = rn denote the number of irreducible factors of the 
polynomial x nf + g. In this paper we show that, for fixed f and g, the parity of rn is 
an eventually periodic function of n. For fixed parity of n this period is a divisor of 
8,g, where 7T is the period (in the usual sense) of the polynomial 

h 1f (x(g/f) - ) 

i.e., the least 7T so that the polynomial h divides (a power of x times) xX - 1. Our 
result can be considered a generalization of Swan's theorem [3] concerning the 
number of irreducible factors of a trinomial Xn + xk + 1 (by taking f = 1 and 
g = xk + 1). 

We also investigate initial tail effects and some observed antiperiodicity properties 
of (the parity of) rn. The paper concludes with tables of values of rn for various f, g, 
and n. 

We wish to thank Lloyd Welch for providing us with a polynomial factoring 
program. This program was an immense help in checking and refining our results. 

2. Background. We begin by recalling various properties of the resultant and 
discriminant for polynomials F, G with integer coefficients [1]. If 

n m 

F(x) = a (x- ai) and G(x) = b Hl (x-/3J) 
i=1 J=1 

then the resultant R(FG) is an integer given by any one of the following equal 
expressions: 

n m 

(1) R ( FG) = amb n Hl H (af -, P) 
1=1 J=1 

n 

(2) R(F,G) = am H G(ai), 
1=1 

m 

(3) R(FG) = (-1) mnbn rHF(31J). 
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R(F, G) is also the value of the determinant of the following (m + n) X (m + n) 
matrix where 

F(x) aaxn + a xn-1 + - +an and G(x) = bxm + blx"-' + +bn: 

a a ... an 0 0 .. 0 

o a al .. a 0 0.. 0 

0 0 a a, ... a ... 0 
.~~~~~~~~~~~~~~ 

0 0 ... ... an-2 an-1 an 

b b1 *- 0 0 0 * 

0 b b ... 0 0 * 

0 0 b b ... ... 0 

0 0 ... ... bm-2 bm-1 bm 

From the above it is easy to deduce the following properties of R: 

(4) R(G, F) = (-1)nmR(F, G), 

(5) R(F, G1G2) = R(F,G1)R(F,G2), R(F1F2,G) = R(F1,G)R(F2, G), 

(6) R(F, G) = a m- deg(G-FH)R (FG - FH) for any H. 

The discriminant D(F) of a monic polynomial Hln 1(x - a,) is given by 

(7) D(F) -H(ai-_ a)2 
i<j 

which can also be written 
n 

(8) D(F) -(-1)(n-1)/2 rI Fa) 

(9) D(F) (= 1)n(n-1)12R(F P) 

Our main tool will be Swan's version of Stickelberger's theorem ([1], [3]). Suppose 
F is a monic polynomial of degree n with integral coefficients and that F, reduced 

modulo 2 (which we denote by F or f ), has r irreducible factors. Then 
(a) D(F) 1 (mod 8) implies r n (mod2), 
(b) D (F) 5 (mod 8) implies r t n (mod 2), 
(c) D( F) i 1, 5 (mod 8) implies f has repeated factors. 
Hence, the value of D(F) (mod 8) determines the parity of r if f has no repeated 

factors and the parity of n is known. 

3. Theoretical Results. We consider first a special case. Let g be a polynomial of 

degree k over the two-element field F2 with g(0) = 1, and let G be a polynomial 
with integer coefficients of the same degree with G - g. (Take, say, all coefficients of 

G to be 0 or 1.) Consider the family {( pn of polynomials over F2 given by 

Pn = n + g(x) and the associated family {P,} with Pn- = + G(x). We have 

(considering only cases with n > k) 

D(Pn) =(_)nln-1)12R( P,) 
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However, the assumption G(O) = 1 implies R(P, x) = (- 1)", so 

R(Pn, xPn) = (-1) R(Pn, Pn), 

and 

D(Pn) = 1 = (-1) n(n+ 1)/2-R (Pn xPn-nPn), 

using property (6) of Section 2. 
Let Hn = xP' - nPn, and hn = Hn. Then we have Hn = xG' - nG since the 

contributions from Xn cancel, and hn = xg' - ng only depends on the parity of n. 
Hence, if the parity of n is fixed, h n does not depend on n. 

For fixed parity of n, let 7r denote the period of hn, i.e., the least positive integer 
such that hn divides x' - 1 in F2[x]. (If hn has zero constant term, let 7r denote the 
period of kn where hn = xtkn and kn(O) = 1.) Then we have 

THEOREM 1. Let rn denote the number of irreducible factors of pn = xn + g. Then if 

pn has no repeatedfactors (and n is sufficiently large) we have 

rn rn + LCM(8,4,T) (mod 2), 

where 7T is the period of hn = xg' - ng.* 

Proof. Using the Stickelberger-Swan theorem it suffices to prove that 

D(Pn) D(Pn+?LCM(8,4,)) (mod 8). 

Now we have shown 

D(Pn) = n(n+ )/2 R ( P Hn) 

and (-) (+ 1)/2 has period 4, so it suffices to show that R(Pn, Hn) is congruent to 

R(Pn+?LCM(8,4,f), Hn+lLCM(8,4,ff)) (mod 8). 

Clearly Hn and Hn+8 are congruent (coefficient by coefficient) modulo 8 and have 
the same degree, so from the determinant definition of the resultant we need only 
show that 

R(Pn, Hn) R(Pn+?4,T, Hn) (mod8). 

Since hn divides x -1, we know that Hn divides x'r - 1 (mod 2), i.e., xX 1 + 2K 
(mod Hn). Therefore 

X47T (1 + 2K)4 1 + 8L (modHn). 

(If he divides x'(x" - 1), then x4IT +4t _ x4t + 8L (mod H).) 
Case 1. Suppose n - k is odd. Then Hn and hn have the same degree. This means 

that in the congruence x4, = 1 + 8L (mod Hn) we can take the degree of L to be 
less than 4 7. In other words we have x47 = 1 + HnM (mod 8) with the degree of 
1 + HnM equal to 47r. This gives X?+4Tf _ n + xnHnM (mod 8). 

Now we have 

R(Pn+41T, H) = R(Xn+4,r + G, Hn) 

-lR(xn + xnHnM + G, Hn) (mod8), 

*Note: Xf will always be a square or x times a square, so 77 will be even unless =1 and hence 
LCM(8,4is) = 4ST unless S = 1. 



324 HAROLD M. FREDRICKSEN, ALFRED W. HALES AND MELVIN M. SWEET 

using the determinant definition of R and the fact that x' + xHnHM has degree 
n + 47r. Hence, 

R(Pn+4,, Hn) (k - n 'R + G, Hn) (mod 8), 

where (k - n) is the leading coefficient of Hn and we are using properties (6) and 
(4) of Section 2. Since (k - n)4, = 1 (mod 8) we conclude 

R (Pn+4,r Hn)= R (Pn, Hn ) (mod 8). 
This completes Case 1. 

Although we have only given the details when hn(O) = 1, the argument is similar 
for t > 0 and shows that periodicity will hold as soon as n is at least 4t (and of 
course greater than k). 

Case 2. Suppose n - k is even. Then hn has degree I < k and we write u = k - 1. 
By applying Hensel's lemma [2, p. 275] we can write Hn = Hn($)Hn(2), where Hn 
Hn ) have 2-adic coefficients 

jn(1) = hn, jj(2)-1 

Hn() has degree 1, and Hn(2) has degree u. By property (5) of Section 2 we need only 
that 

R ( Pn+4, Hn() R ( Pn, Hn(1)) (mod 8) 
and 

R(Pn+4 H2 R(Pn H2)) (mod 8). 
The former follows immediately from Case 1. For the latter we proceed as follows. 
Since Hn 1 (mod 2) we can write x =1 + 2Q (mod Hn where the degree of Q 
is u + 1. Hence x4-1 + 8R (modH ), where the degree of R is 4u + 4, or 
x4- + Hn2)S (mod8) with the degree of Hn(2)S equal to 4u + 4. Now for any 
nonzero xa present in G we have 

x4+a xa + xaHn(2)S (mod 8). 

Suppose n is larger than k + 4u, so that n + 4 is larger than k + 4u + 4. Then the 
degree of x aHn(2)S will be less than n + 4. Hence 

R( n+4 + G, H = 2))=R + x4G - Hn(2)SG, Hn(2)) (mod 8), 

using the determinant definition of R. Hence, applying properties (6) and (4) of 
Section 2, we have 

R(Xn+4+ G, Hn(2)) R(xn+4 + x4G H,(2)) (mod8 

But we have 

R(x4(xn + G), H(2)) = R(x4, Hn(2))R(xn + G, H(2)) 

= (H7(2)(0))4R(xn + G, Hn(2)) 

--R(Xn + G, Hn(2)) (mod8), 

using properties (5) and (2) of Section 2. Hence, we have 

RP-4Hn(2))-RP Hn(2)) (o8 

and, upon iterating, 

R(Pn 4 n R(Pn mod 8). 

This completes Case 2 and hence the proof of Theorem 1. 
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In Case 2, periodicity will hold as soon as n > 4t and n > k + 4u. 
Now let us consider the more general case of a family of polynomials { PJ } with 

Pn = x nf + g, where f, g are coprime polynomials over F2 with g(O) = f(O) = 1 
(consider only n > k= degree g). Suppose F, G are polynomials with integer 
coefficients with F = 6f G = g, degree F = degree f, degree G = degree g. (As 
before,we take all coefficients of F, G to be 0 or 1.) Let Pn = x'F + G. We have 

R(P,1, ,Pn) = R(xnF + G, nxn-1F + xnF' + G') 

= R(xnF + G, x) 'R(xnF + G, nxnF + xn+1F' + xG') 

- (_ ~n+ degFR(XnF+ G,Xn+ F' + xG' - nG) 

(- ~n+degFR(XnF+ G, F)-1R(xnF+ Gxn+1FF' + xFG' - nFG) 

-(_ )ndeg R(GF) R(XnF+ G,xFG' - xGF' - nFG), 

using various properties from Section 2. Letting Hn = xFG' - xF'G - nFG, and 
hence obtaining 

hn = Hn = xfg' - xf 'g nfg f2(X(g/f)- 

we have 

THEOREM 2. Let rn denote the number of irreducible factors of Pn = xnf + g. If Pn 
has no repeated factors (and n is sufficiently large), then rn rn+ LCM(8,4.) (mod 2), 
where 7T is the period of h n = f 2(X(g/f )' -n(glf)).** 

From the above calculations it clearly suffices (for the proof of Theorem 2) to 
show that 

R(Pn, Hn) R(Pn+4S, Hn) (mod 8). 
We omit the details, since they are very similar to those of the proof of Theorem 1, 
i.e., the case f = 1. Periodicity will again hold as soon as n > 4t and n > k + 4u, 
where xt exactly divides h n k = degree g, and u = degree Hn - degree hn. 

4. Further Comments. Although our results appear to be best possible in general, 
there are many special cases in which the actual period of the function rn is less than 
the period predicted by our theorems. One such case is that of trinomials x n + x k + 

with n odd and k even, where the period is 8 rather than 4k. 
Theorems 1 and 2 do not address the case of repeated factors. Certainlyif Pn has 

repeated factors so will Pn+LCM(8,4,), since this is detected by the parity of D(Pn). 
Unfortunately, the Stickelberger-Swan theorem does not give information about the 
parity of rn in this case. However, any repeated factors of pn must divide hn. For 
given h n these can be divided out of pn at the start, giving a new family of 
polynomials parameterized by n in a more complicated way than that of our 
Theorems 1 and 2. Our techniques can be used to extend our results to cover this 
situation also, and hence to extend Theorems 1 and 2 to the repeated factor case. We 
omit the (relatively messy) details. 

Finally, consider a family of the form Pn = Xn + g(x), where n is odd and 
g(x) = U(X)2. Then hn = g. Suppose further that u(x) has odd period r'. Then 
u(x) and (xX - 1)/u(x) are coprime,so we can find (by Hensel's lemma) 2-adic 

**Note: As in Theorem 1, either LCM(8,4,g) = 4,g or S = 1. 
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polynomials U(x), V(x) with U = u, UV = -X - 1, and degree U = degree u. This 
gives x2,' - 1 = U(x2)V(x2), where U(x2) U(X)2 = g(x). By appropriately 
choosing G (i.e., no longer with 0, 1 coefficients) with degree G = degree g, G = g, 
we can guarantee that Hn = xG' - nG is congruent to U(x2) (mod 8). (Adding two 
to the coefficient of a term xa of G adds 2(a - n) to the coefficients of Xa in Hn.) 
Hence x2,' = 1 + HnM (mod 8). From this, as in Case 1 of Theorem 1, we deduce 

R(Pn +4,,' Hn) R (Pn, Hn) (mod 8). 
On the other hand, if we compare R(Pn + 4v Hn) and R(Pn+4 ,,, Hn+4,,) via the 
determinant definition of R, using the fact that the nonzero coefficients of Hn+4v, 
are each 4 v' smaller than those of Has and the fact that for any odd integer N we 
have N - 4 (-3)N (mod 8), we find that 

R(P"+4#z, Hn+4,,,) _ (-_n3) X 4 Hn) (mod 8). 

But (- 3)T'n = (-3) (mod 8), so we conclude that rn is antiperiodic with antiperiod 
4 v'. (Note that the predicted period of rn is 4 v = 8 r', which this result implies.) 

5. Experimental Results. In this section, we give tables of values of rn for various 
f, g, and n. The cases where Theorem 1 applies (f = 1) are listed first. The cases of 
odd and even n are listed separately. The parity (0 or 1) of rn is also given. 

After each table, we give the polynomial h = h n; the predicted period LCM(8, 4S) 
of rn; the observed period (if it is different); and the antiperiod for those cases 
covered in Section 4. 

I.f=1; g = x3 + x + 1. 
n 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 
r, 3 4 3 5 3 4 5 5 5 6 3 5 5 4 3 7 
parity 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 

h = x3 + x; period = 8. 
II.f=1; g=x4 +x2 +1. 

n 5 7 9 11 13 15 17 19 21 23 25 27 29 31 

r', 2 2 2 2 3 4 3 3 3 3 2 3 4 4 
parity 0 0 0 0 1 0 1 1 1 1 0 1 0 0 

n 33 35 37 39 41 43 45 47 49 51 53 55 57 59 

r', 2 4 3 2 3 5 3 5 2 5 4 2 4 4 
parity 0 0 1 0 1 1 1 1 0 1 0 0 0 0 

h = x4 + x2 + 1; period = 24; antiperiod = 12. 
III. f= 1; g = x5 + x + 1. 

n 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 
r,7 3 5 3 6 4 7 4 6 3 5 5 6 6 5 4 8 
parity 1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 

h = x5 + x; period = 16. 
IV. f= 1; g = x6 + X2 + 1. 

n 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 

r', 2 2 3 2 2 3 4 3 4 4 2 5 3 5 5 5 
parity 0 0 1 0 0 1 0 1 0 0 0 1 1 1 1 1 

ii 39 41 43 45 47 49 51 53 55 57 59 61 63 
4 3 5 2 5 4 5 5 3 4 6 4 4 

parity 0 1 1 0 1 0 1 1 1 0 0 0 0 

h = X6 + X2 + 1; period = 56; antiperiod = 28. 
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V. f = 1; g = x7 + x + 1. 

nl 8 10 12 14 16 18 20 22 24 26 28 30 

rl, 4 4 5 4 3 7 4 7 6 5 3 6 
parity 0 0 1 0 1 1 0 1 0 1 1 0 

n1 32 34 36 38 40 42 44 46 48 50 52 54 

rl, 4 4 7 4 3 9 4 5 6 7 5 8 
parity 0 0 1 0 1 1 0 1 0 1 1 0 

h = x7 + x; period = 24. 
VI. f=1; g=X8 +X4 1. 

n 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 
ri, 3 2 4 3 3 2 2 3 3 4 2 3 3 2 4 3 5 4 4 
parity 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 

h = X8 + x4 + 1; predicted period = 48; observed period = 8. 
VII. f = 1; g = X ?9+ X + 1. 

n 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 

rl, 4 6 4 10 4 6 4 10 5 8 5 10 5 6 5 12 
parity 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 

n1 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 

rl, 4 6 6 10 4 8 4 12 7 6 3 12 5 6 7 12 
parity 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 

h = x9 + x; period = 32. 
VIII. f = 1; g = X9 + X +1. 

n 11 13 15 17 19 21 23 25 27 29 31 33 

rl, 3 4 2 3 5 4 3 5 3 4 5 3 
parity 1 0 0 1 1 0 1 1 1 0 1 1 

n 35 37 39 41 43 45 47 49 51 53 55 57 
r~l 2 4 5 3 6 4 5 5 4 4 5 2 
parity 0 0 1 1 0 0 1 1 0 0 1 1 

h = 1; period = 8. 
IX. f = 1; g = X17 + X ? 1. 

n 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 

rl, 4 6 4 10 3 6 4 18 6 6 5 12 4 6 4 20 
parity 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 

n1 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 

rl, 5 8 3 10 4 6 7 18 5 6 4 10 5 6 3 20 
parity 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 

h = X17 + x; period = 64. 
X. f= 1; g=X5 +X3 +X1 

n 6 810 12 14 16 18 20 22 24 26 28 30 32 34 36 

rl, 3 1 2 4 1 1 4 2 1 5 2 2 5 3 2 4 
parity 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 

n 38 40 42 44 46 48 50 52 54 56 58 60 62 

rl, 3 3 6 2 3 5 2 4 7 3 4 4 3 
parity 1 1 0 0 1 1 0 0 1 1 0 0 1 

h = X5 + X3 + x; predicted period = 24; observed period = 8. 
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XI.f=l; g=x7 +x3 +x+1. 

n 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 
r,, 2 2 1 3 2 2 3 1 3 2 4 1 3 4 2 3 
parity 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 

n 41 43 45 47 49 51 53 55 57 59 
r,, 1 2 2 1 3 2 4 3 3 4 
parity 1 0 0 1 1 0 0 1 1 0 

h = 1; period = 8. 

XII. f = 1; g = X7 + X3 + X + 1. 

n 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 
r7 1 1 1 4 2 2 2 1 3 3 4 1 3 3 2 
parity 1 1 1 0 0 0 0 1 1 1 0 1 1 1 0 

n 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 

rn7 2 4 3 5 5 3 2 2 4 6 2 4 2 3 3 3 4 
parity 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 

n 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 

rn7 4 4 2 3 3 3 8 3 3 3 4 2 4 3 3 5 5 
parity 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 1 

h = X7 + X3 + x; period = 56. 

XIII. f = 1; g = x8 + X7 + X + 1. 

n 10 12 14 16 18 20 22 24 26 28 30 32 

7r 4 1 2 3 3 1 4 2 1 4 2 2 
parity 0 1 0 1 1 1 0 0 1 0 0 0 

n 34 36 38 40 42 44 46 48 50 52 54 56 58 60 
7 1 2 7 3 3 4 2 3 6 2 4 7 5 

parity 1 1 0 1 1 1 0 0 1 0 0 0 1 1 

h = X7 + x; period = 24. 

XIV. f = 1; g = X9 + X5 + X + 1. 
n 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 

rl, 1 5 2 2 3 1 1 6 2 1 4 2 1 5 2 2 4 3 3 6 
parity 1 1 0 0 1 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 

n 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 

rl, 2 3 5 4 5 7 2 2 5 3 3 8 2 3 6 2 3 7 4 2 
parity 0 1 1 0 1 1 0 0 1 1 1 0 0 1 0 0 1 1 0 0 

h = x9 + x5 + x; period = 48. 

XV. f = X + 1; g = x2 + X + 1. 

n 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 
r7 1 1 1 2 1 3 2 2 1 3 4 2 3 1 2 2 
parity 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 

n 35 37 39 41 43 45 47 49 

rn7 3 3 2 4 3 3 2 2 
parity 1 1 0 0 1 1 0 0 

h = 1; period = 8. 
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XVI. f = x + 1; g = x2 + x + 1. 
n 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 

rn7 1 2 2 2 1 1 2 2 3 1 2 2 3 3 2 2 
parity 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 

n 36 38 40 42 44 46 48 

rnl 3 3 2 2 3 3 4 
parity 1 1 0 0 1 1 0 

h = X3; period = 8. 
XVII. f= x + 1; g = X3 + X + 1. 

ii 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 
r, 1 1 3 1 2 2 1 3 2 2 3 3 2 2 3 3 2 4 
parity 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 

h = X3; period = 8. 
XVIII. f =x + 1; g = X3 + X + 1. 

n 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 
3 1 2 3 1 2 4 2 1 5 2 3 7 1 4 

parity 1 1 0 1 1 0 0 0 1 1 0 1 1 1 0 

11 35 37 39 41 43 45 47 49 51 53 55 

rl, 5 1 2 4 4 3 5 2 1 5 1 
parity 1 1 0 0 0 1 1 0 1 1 1 

h = XI + x2 + 1; period = 24. 
XIX. = x + 1; g = X3 + X2 + 1. 

n 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 
r~l 1 2 2 1 2 2 1 3 2 2 5 1 2 2 3 1 
parity 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 

n 36 38 40 42 44 46 48 50 
r,, 4 2 1 5 2 2 3 3 
parity 0 0 1 1 0 0 1 1 

h = x; period = 8. 
XX. f= x + 1; g = X3 + x2 + 1. 

11 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 

rnl 1 1 4 1 1 4 2 2 5 2 2 4 5 1 4 
parity 1 1 0 1 1 0 0 0 1 0 0 0 1 1 0 

n 35 37 39 41 43 45 47 49 51 

rl, 3 3 4 2 2 5 2 2 4 
parity 1 1 0 0 0 1 0 0 0 

h = X4 + x2 + 1;period = 24. 
XXI.f=x+1;g=X4 +x2 + 1. 

nl 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 

rl, 1 2 1 2 1 1 3 3 2 3 2 4 2 4 1 

parity 1 0 1 0 1 1 1 1 0 1 0 0 0 0 1 

n 35 37 39 41 43 45 47 49 51 
rl , 4 3 1 3 1 4 5 4 2 

parity 0 1 1 1 1 0 1 0 0 

h = X4 + x2 + 1;period = 24. 
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XXII. f = x + 1; g-x4 + x2 + 1. 
n 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 

r"l 1 1 2 1 2 2 2 2 1 2 3 3 1 3 2 
parity 1 1 0 1 0 0 0 0 1 0 1 1 1 1 0 

n 36 38 40 42 44 46 48 50 
rn 1 4 2 4 2 5 4 1 
parity 1 0 0 0 0 1 0 1 

h = x5 + X3 + x; period = 24. 
XXIII. f = x2 + 1; g = x4 + x2 + 1. 

n 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 

rl, 2 1 1 3 1 2 3 2 2 2 4 3 2 3 3 
parity 0 1 1 1 1 0 1 0 0 0 0 1 0 1 1 

n 35 37 39 41 43 45 47 49 51 

rl, 3 1 4 3 2 2 4 2 3 
parity 1 1 0 1 0 0 0 0 1 

h = x6 + 1; period = 24. 
XXIV. f = x2 + X + 1; g = X3 + X + 1. 

n 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 
rl, 2 2 2 3 3 3 4 2 3 3 2 2 3 5 4 2 
parity 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 

n 36 38 40 42 44 46 48 50 

rl, 5 5 4 4 5 5 2 4 
parity 1 1 0 0 1 1 0 0 

h = x5; period = 8. 
XXV. f = x2 + X + 1; g = X3 + X + 1. 

n 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 
rn 3 5 4 6 4 5 3 6 3 7 4 8 4 7 5 
parity 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 

n 35 37 39 41 43 45 47 49 51 

rl, 5 5 7 4 8 6 7 5 8 
parity 1 1 1 0 0 0 1 1 0 

h = x4 + 1; period = 16. 
XXVI. f= x2 + x + 1; g = X3 + x2 + 1. 

n 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 
r,, 3 6 3 5 4 6 4 7 5 8 3 7 4 6 4 9 
parity 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 

n 36 38 40 42 44 46 48 50 

rl, 3 6 3 7 4 8 6 7 
parity 1 0 1 1 0 0 0 1 

h = x5 + x; period = 16. 
XXVII. f = x2 + X + 1; g= X3 + x2 + 1. 

n 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 
rl, 2 2 2 2 3 2 2 3 3 2 4 5 3 4 4 
parity 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 

n 35 37 39 41 43 45 47 49 51 
r,, 3 3 2 4 3 3 4 4 3 
parity 1 1 0 0 1 1 0 0 1 

h = 1; period = 8. 



A GENERALIZATION OF SWAN'S THEOREM 331 

XXVIII. f = X3 + x2 + 1; g = X3 + X + 1. 

n 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 
r, 5 3 2 4 3 3 6 4 5 5 6 2 5 3 2 6 
parity 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 

h = X5 + X3 + x; predicted period = 24; observed period = 8. 
XXIX. f = X3 + X2 + 1; g= X3 + X + 1. 

sn 9 11 13 15 17 19 21 23 25 27 29 31 33 

r', 6 5 8 3 6 5 7 7 6 3 8 5 6 
parity 0 1 0 1 0 1 1 1 0 1 0 1 0 

11 35 37 39 41 43 45 47 49 51 53 55 

r', 7 7 7 8 5 8 7 8 5 9 5 
parity 1 1 1 0 1 0 1 0 1 1 1 

h = x6 + x4 + x2 + 1; predicted period = 32; observed period = 16. 
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